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ABSTRACT A- 
Based on the fact that all ballistic space trajectories can be piece- 

wise approximated by conic sections, certain geometric and dynamic 
similarities of these trajectories permit a systematic and unified 
guidance investigation. This Report develops a set of dimensionless * 

differential corrections and a “proper” coordinate system suitable for 
generalized guidance analysis. Numerical results in graphic form are 
presented which are applicable to the calculation of target dispersions 
due to random injection errors and the determination of required mid- 
course corrective maneuvers. 

i - 
1. INTRODUCTION 

In planning a lunar or planetary mission, numerous 
preflight trajectories are generated to find a set of stand- 
ard trajectories that best accommodates mission objectives 
and that also meets guidance and tracking requirements. 
It is clear that as the complexity and intensity of space 
exploration increases, a unified approach to trajectory 
design must be developed to minimize the task of the 
trajectory designers. A major step in this unifying attempt 
has been the use of Keplerian conic sections to approxi- 
mate various segments of a space trajectory (Ref. 1, 2) .  
This approach to trajectory calculation greatly reduces 
the computing time and gives accurate trajectory repre- 
sentation for many design purposes. Using conic approxi- 
mations, a space trajectory can be logically divided into 

distinct phases. An interplanetary trajectory, for example, 
consists of three phases of Keplerian motion: an escape 
hyperbola near the launch planet, a transfer ellipse under 
the influence of the Sun, and an approach hyperbola near 
the target planet. A lunar trajectory consists of a transfer 
ellipse from the Earth to the vicinity of the Moon, and an 
approach hyperbola near the Moon. In both cases, the 
transfer ellipse is the major portion of the trajectory, and 
determines its essential characteristics. 

This Report is concerned with the unified treatment of 
trajectory design from the guidance point of view, the 
objective being to study the target error sensitivity to 
velocity impulses at various points along the path. The 

1 
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approach presented is based on the usual assumption 
that the actual trajectory followed by a spacecraft differs 
only slightly from the designed or standard trajectory so 
that linear perturbation theory is adequate for error 
analysis. Within the framework of linear theory, the 
guidance characteristics are then determined by the be- 
havior of the set of differential corrections which map 
velocity perturbations to target errors. It is further as- 

,i sumed that, while the escape and approach hyperbolic 
conics are important i n  design studies of launch and 
arrival phases of flight, they may be ignored for guidance 
investigation, and only the transfer ellipse need be con- 

sidered. .This assumption greatly facilitates the general- 
ization of guidance analysis, and guidance studies for 
lunar and planetary missions (Ref. 3) have shown that 
such an approximation is adequate for many design 
purposes. 

-__---- 

Following this approach, this Report develops a set of 
dimensionless differential corrections, permitting a sys- 
tematic and unified guidance investigation of the transfer 
ellipse. In order to facilitate the exposition, a “proper” 
coordinate system suitable for guidance studies is intro- 
duced. Numerical results in graphic form are presented. 

-.. 

II .  SCOPE OF GUIDANCE ANALYSIS AND BASIC EQUATIONS 

Because of error sources in the injection guidance sys- 
tem, a space vehicle designed to reach a desired terminal 
point at a given time on the standard (or reference) tra- 
jectory will generally not achieve the desired terminal 
conditions unless corrective maneuvers are made. Space 
guidance is accomplished by employing an orbit deter- 
mination process to estimate the orbital elements of the 
trajectory, and then applying one or more impulsive ve- 
locity corrections to null the predicted target error. Given 
a designed trajectory, the preflight guidance analysis 
deals primarily with the statistical problems of (1) exam- 
ining the target dispersions arising from errors in the 
injection guidance system, the orbit determination pro- 
cess, and the commanded corrections, and (2) determining 
the amount of propellant to carry aboard the spacecraft 
for corrective maneuvers. Since the basic guidance theory 
has been well documented (Ref. 4, 5) ,  the present work 
will only state some basic equations pertaining to the 
analysis to follow. 

In the absence of postinjection guidance, the position 
error vector 6rf at targeting time tf is a function of the 
standard trajectory and the errors at injection. Assuming 
linear perturbation theory to be valid, Srf is given by 

where sqo is the six-dimensional (position and velocity) 
error vector at injection time to, and U ,  is a 3 by 6 map- 
ping matrix evaluated on the standard trajectory. In 
order to correct the target miss by applying a velocity 
impulse Av,  at some time t after injection we have 

Av,  = -K;l Sr, = -K;’ U, 6qo (2) 

where 

Kt = [ $1 
is a 3 by 3 mapping matrix. The inflight calculation of 
“velocity-to-be-gained Avt  is given by Eq. (2), where 
Sq, is estimated from the orbit determination process. 

Since 6qo can only be described statistically in pre- 
flight studies, the amount of propellant required for 
corrective maneuvers is determined from Eq. (2) by con- 
sidering the covariance matrix of Avt ,  given the covari- 
ance matrix of Sqo. Let 

and 

2 
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where the superscript T indicates “transpose” and the 
angle brackets indicate ensemble average. It follows 
from Eq. ( 2 )  that 

(3) 

The trace of the matrix determines the mean- 
squared value of the required Avt at time t. 

A commonly made assumption is that the position and 
velocity errors at injection can be represented by an 
“equivalent” velocity-to-be-gained Avo. For example, Avo 
would be the equivalent error in the hyperbolic excess 
velocity relative to the Earth for interplanetary missions. 
Equation ( 2 )  then reduces to 

and Eq. (3)  becomes 

For subsequent guidance corrections the errors in apply- 
ing the first correction, due to orbit determination and 
maneuver mechanization, play the role of Avo. 

It can be seen that, given the statistics of the injection 
errors for any standard trajectory, preflight guidance 
analysis of the mission is based upon the properties of 
K ,  for to <_ t 2 ttinal.  Hence, the unified approach to 
preflight guidance analysis hinges on the general prop- 
erties of K ,  over the set of all possible transfer ellipses. 
It is recalled that the elements of K t  are simply the 
partial derivatives of position coordinates at a terminal 
time tl with respect to the velocity coordinates at some 
previous time t. This set of partial derivatives shall be 
called differential corrections. Their general properties 
and numerical results pertaining to a unified guidance 
investigation are discussed in the Sections to follow. 

111. GENERAL PROPERTIES OF DIFFERENTIAL CORRECTIONS 

In this Section let us consider in general the 3 by 3 
matrix K ( tZ,  tl),  defined by 

where 8v(tl) is a small perturbation of the velocity vec- 
tor at time tl on a designed trajectory, and 8r(t2) is the 
corresponding position perturbation at some later time 
t2 .  For simplicity we write Eq. (6) in the form 

Sr2 = K6vl (7) 

The assumption that the transfer ellipse gives adequate 
trajectory representation for guidance analysis purposes 
greatly facilitates the analytical determination of the dif- 
ferential corrections and, more important, makes possible 
the development of a set of generalized differential cor- 
rections applicable to a large class of space trajectories. 

It also leads to the analytical determination of a coordi- 
nate system ideally suited for guidance studies. 

A relatively simple derivation of the elements of K for 
an elliptic trajectory is given in the Appendix. This Re- 
port is primarily concerned with the general properties 
of the differential corrections so derived. 

A. A Factorization of the K Matrix: Dimensionless 
Differential Corrections 

If the trajectory from time tl to time t, is elliptic, the 
elements of K are uniquely determined when the follow- 
ing five parameters are specified: 

p = product of the gravitational constant and the mass 
of the central body 

e = eccentricity 

3 
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a = semimajor axis of the ellipse 

+, and +2  = angle coordinates (true anomalies, eccen- 
tric anomalies, or mean anomalies) of the space 
vehicle at times t ,  and t2 respectively. 

Hence we may write 

Since dimensional homogeneity of Eq. (8) requires that 
the elements of K have the dimension of time, it is im- 
mediately revealed from dimensional analysis that a fac- 
torization exists, namely, 

where n = [ , d n 3 ]  is the mean angular velocity. The 
elements of K’ are dimensionless. This observation is im- 
portant as it implies that for two elliptic orbits with the 
same eccentricity we have the relation 

The dimensionless elements of K’ are of central im- 
portance, since the differential corrections for a whole 
class of trajectories having the same eccentricity can be 
obtained from them by the multiplication of a simple 
factor l/n. 

8. Diagonalization of the K Matrix: The “Proper” 

In the study of differential corrections and guidance 
characteristics, great mathematical simplicity results 
when, by means of proper choices of orthogonal coordi- 
nate systems for Sv, and Sr,, the K matrix becomes diag- 
onal. To illustrate, let 

Coordinate System 

SVT = (So,, 80,) So,) 

and (11) 

where the coordinate systems describing v1 and rz are 
chosen so that 

K = diag (A,, A*, A3) (12) 

The matrix Eq. (7) then reduces to 

The linear mapping properties between the two vector 
variations Sv, and Srz, either in the statistical or deter- 
ministic sense, now become immediately apparent. We 
shall now show that there exist orthogonal coordinate 
systems for Sv, and Sr, where a diagonal K matrix results, 
and present formulas for their analytical determination. 

Let us consider the Cartesian coordinate system shown 
in Fig. 1, i.e., 

svT = (Si,, Sy,, Si,) 

where x- and y-components are in the standard plane of 
motion and z-component is out-of-plane; then it is shown 
in the Appendix that 

so that 

= K  

It is thus obvious that the z-axis (out-of-plane direction) 
is one of the desired coordinate axes for both SV, and 
Sr2. Let us consider only in-plane coordinates, and define 

Since a general real symmetric matrix can be reduced to 
diagonal form by means of an orthogonal transforma- 
tion, we can find an orthogonal matrix 

N ,  = [ cos a, sin a2 

-sins, cos ap 

4 
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such that 
sv l=  [: ;] si, (25) 

* "T N , K K  N : = N , [ ;  

It is easy to show that 

N : =  [:: :] (19) It is noteworthy that, since l/n is a multiplicative fac- 
tor of the K matrix, the angles a, and a, are functions 
only of e, and +,. 

The quadrant of a2 is fixed if, for h, # As, we specify 
h, > h2 and take the smallest I a2 I counterclockwise from 
some reference direction. 

From Eq. (19) define the orthogonal transformation 

(20) C. Dispersion Ellipsoids 

which uniquely specifies al if a2 is given. Thus 

N ,  NT = the identity (22) 

and from Eq. (16), 

An important aspect to be considered is the determina- 
tion of the probability density of position perturbations 
at time t2 due to velocity variations at some previous time 
t,. Assuming that the 6v, has a multivariate Gaussian dis- 
tribution with zero means and small standard deviations, 
it follows that the joint probability density of 6rz is also 
multivariate Gaussian. The position dispersions are con- 
veniently expressed by three-dimensional dispersion ellip- 
soids determined by contours of constant probability 
density (Ref. 5). From Eq. (13) we conclude that the 
lengths of principal semiaxes of these ellipsoids are pro- 
portional to the hi and their orientations are given by 
the ai if the components of 6v, are independent with 
equal standard deviations u. Since the coordinates in the 
standard plane of motion are not coupled to out-of-plane 
coordinates, it is clear that one of the principal axes for 
all ellipsoids is the out-of-plane direction. 

Let the lengths of the principal semiaxes of the cross 
and that in the out-of- section be denoted by h: and 

plane direction by hi ; then 

where k is the index of constant probability. For exam- 
ple, k = 1, 2, 3 would correspond to the probabilities 

= [ N ,  p N ; ]  [ f 1 ] [ N , ]  [ 6 ~ 1  ""] 0.20, ellipsoid. 0.74, and 0.94, respectively, of 6r, being within an - 
A 2  

(23) 
D. Capability of Midcourse Correction 

Given a position error 6r2, which is to be corrected by 
a velocity impulse Av, at some time tl < t,, the required 
Av, is [see Eq. (2)] 

Hence, the K matrix becomes diagonal by choosing the 
initial and final coordinate system such that AVi = -K-l 6rz 

[: Sr, = 
if the K matrix is not singular. It is therefore of interest 
to examine the existence of K-' for general elliptic 
trajectories. 

(24) 

5 
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The K matrix does not have an inverse if: 

1. As = 0 

The curves presented in Section IV indicate that this 
occurs when v 2  - v1 is a multiple of X .  It implies 

rected by velocity impulses applied at v 1  = v 2  - X .  

that an out-of-plane position error cannot be cor- P 

2. A, and/or k1 = 0 

This condition implies that the gradient vectors 

gl = [ :::3 and gz = [ 3 
Fig. 1. The coordinate system are collinear, or that one or both are zero. 

IV. NUMERICAL RESULTS 

The elements of the diagonalized and normalized dif- 
ferential correction matrix A I  and the coordinate rotation 
angles ai were numerically evaluated with an IBM 7094 
digital computer, based on the analytical expressions de- 
rived in the Appendix. These quantities were then plotted 
automatically, and are presented in graphic form in 
Fig. 2-36. Their definitions are as follows: 

= nA, Max gradient = maximum of {A: A:}, where 

Min gradient = minimum of {A:, A:} 

Normal gradient = the out-of-plane differential cor- 
rection hi = nk13, where k33 is 
defined by Eq. (16) 

Gradient angle = the rotation angle al [Eq. (21)], 
measured counterclockwise from r1 
to the maximum gradient vector 
(Fig. 1) 

Target angle = the rotation angle a2 [Eq. (18)], mea- 
sured counterclockwise from r2 to tar- 
get error direction 6vl * A, (Fig. 1) 

and XI, A, are definkd by Eq. (19) 

Since the dimensionless differential corrections are 
functions of the eccentricity of the ellipse and the angle 

coordinates of t,.e space VE icle at the in i tk  an’ ,,rial - 
points of the trajectory, a large collection of graphs is 
necessary to cover various practical situations (Fig. 2-36). 
The graphs are constructed by choosing seven values of 
the eccentricity: e = 0, 0.1, 0.25, 0.5, 0.75, 0.9 and 0.98741 
(a typical value for lunar trajectories). For each value of 
e several final target positions are chosen, defined by the 
true anomaly v 2  at multiples of 30-deg intervals from 0 
to 360 deg. The above-described quantities are then pre- 
sented for various values of v 2  by plotting them vs the 
difference between the final and initial mean anomalies 
(in degrees), which is called “time angle.” The time angle 
divided by the mean angular velocity (in compatible 
units) is the time of flight between the initial and final 
point. For the circular orbit case ( e  = 0) only one curve 
is presented for each quantity considered, since the dif- 
ferential corrections are not functions of v 2  explicitly. 
Note that the choice of time as independent variable 
(rather than, say, true anomaly) implies that the differ- 
ential corrections do not all go to zero at a time angle 
equal to 360 deg. 

A thorough interpretation of the numerical results is 
beyond the scope of this Report, but some discussion is 
in order to explain the unusual behavior of the curves for 

6 
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eccentricity near one (see Fig. 32-36). On rectilinear 
ellipses ( e  = 1) the velocity vector instantaneously ro- 
tates by 180 deg at appoapsis and periapsis, and at 
periapsis the speed becomes infinite. Recognizing that 
the differential corrections are the partial derivatives of 
position coordinates at some fixed time with respect to 
velocity coordinates at some earlier fixed time, and that 
the semimajor axis of the ellipse can be changed only by 

TIME ANGLE,deg 

Fig. 2. Max gradient vs time angle for 
eccentricity 0.0 

applying a velocity perturbation in the direction of the 
velocity vector, the behavior of the curves for eccentricity 
near one can be intuitively justified. 

TIME ANGLE, deg 

Fig. 4. Normal gradient vs time angle for 
eccentricity 0.0 

TIME ANGLE, deg 

Fig. 3. Min gradient vs time angle for 
eccentricity 0.0 

TIME ANGLE, deg 

Fig. 5. Gradient angle vs time angle for 
eccentricity 0.0 

7 



J P L  TECHNICAL REPORT NO. 32-577 

2.0 

TIME ANGLE, deg 

Fig. 6. Target angle vs time angle for 
eccentricity 0.0 

I I 
TRUE ANOMALY 

OF TARGET, deg 

40 

TRUE ANOMALY 

TIME ANGLE, deg 

Fig. 7. Max gradient vs time angle for 
eccentricity 0.1 

TIME ANGLE, deg 

Fig. 8. Min gradient vs time angle for 
eccentricity 0.1 

TIME ANGLE, deg 

Fig. 9. Normal gradient vs time angle for 
eccentricity 0.1 
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TIME ANGLE, deg 

Fig. 10. Gradient angle vs time angle for 
eccentricity 0.1 
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Fig. 1 1. Target angle vs time angle for 
eccentricity 0.1 

L 

TIME ANGLE, deg 

Fig. 12. Max gradient vs time angle for 
eccentricity 0.25 

I- z w 
a 0 lx 
(3 

TIME ANGLE, deg 

Fig. 13. Min gradient vs time angle for 
eccentricity 0.25 
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TIME ANGLE, deg 

Fig. 16. Target angle vs time angle for 
eccentricity 0.25 

-1.5-1- 
0 50 100 150 200 250 300 350 400 

TIME ANGLE, deg 

Fig. 14. Normal gradient vs time angle for 
eccentricity 0.25 

TIME ANGLE, deg 

Fig. 15. Gradient angle vs time angle for 
eccentricity 0.25 

TIME ANGLE, deg 

Fig. 17. Max gradient vs time angle for 
eccentricity 0.5 

1 0  
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-135 

-150. 

2.2 1 

TIME ANGLE, deg 

Fig. 18. Min gradient vs time angle for 
eccentricity 0.5 

2.0 

1.6 

1.2 

08 

0.4 

0 

-0.4 

-0.8 

-1.2 

-1.6 

-2.0 
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Fig. 19. Normal gradient vs time angle for 
eccentricity 0.5 

140 

TRUE ANOMALY 

TIME ANGLE, deg 

Fig. 20. Gradient angle vs time angle for 
eccentricity 0.5 
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Fig. 22. Max gradient vs time angle for 
eccentricity 0.75 
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Fig. 23. Min gradient vs time angle for 
eccentricity 0.75 

2.1 /210 
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Fig. 25. Gradient angle vs time angle for 
eccentricity 0.75 
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2.7 

2,4 -TRUE ANOMALY 
OF TARGET, deg 

-150 

TIME ANGLE, deg 

Fig. 28. Min gradient vs time angle for 
eccentricity 0.9 
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Fig. 27. Max gradient vs time angle for 
eccentricity 0.9 
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Fig. 29. Normal gradient vs time angle for 
eccentricity 0.9 
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Fig. 30. Gradient angle vs time angle for 
eccentricity 0.9 
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Fig. 31. Target angle vs time angle for 
eccentricity 0.9 
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Fig. 32. Max gradient vs time angle for 
eccentricity 0.98741 
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Fig. 33. Min gradient vs time angle for 
eccentricity 0.98741 
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de9 
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TIME ANGLE,deg 

Fig. 34. Normal gradient vs time angle for 
eccentricity 0.98741 

TIME ANGLE, deg 

Fig. 35. Gradient angle vs time angle for 
eccentricity 0.98741 
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Fig. 36. Target angle vs time angle for 
eccentricity 0.98741 
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NOMENCLATURE 

Column vectors are denoted by bold-face characters; small letters and the sym- 
bols E, F ,  and G are scalars; other capital letters are matrices; I is the identity 
matrix; the superscript T indicates the transpose of a vector or matrix; t is time; 
the symbol <---> indicates the statistical expectation of the quantity in braces; 
subscripts denote the time at which the indicated quantity is being considered. 

Scalars 

time 

initial time (injection) 

final time (at  the target point) 

magnitude of r 

magnitude of v 

product of the gravitational constant and the mass of the central 
body 

semimajor axis of the ellipse 

eccentricity of the ellipse 

true anomaly 

eccentric anomaly 

angle coordinates (true anomalies, eccentric anomalies, or mean 
anomalies) of the space vehicle at times t ,  and t,, respectively 

mean angular velocity 

functions appearing in the derivation of the K matrix elements 

ith diagonal element of diagonalized K matrix 

ith diagonal element of diagonalized K' matrix 

ith semiaxis of a dispersion ellipsoid 

Cartesian coordinates, where the x and y components are in the 
standard plane of motion and x is in the direction of periapsis 

element of the K matrix 

coordinate rotation angle that defines the N i  matrix 

elements of the ( K K T )  matrix 

an index of constant probability 

Vectors 

position of the spacecraft 

velocity of the spacecraft 

16 
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NOMENCLATURE (Cont'd) 

q 

gi 

ei 

coordinate vector of the spacecraft; thus qT = (r', v') 

a gradient vector; specifically, the ith row of the K matrix 

basis vector for the X, y, z Cartesian coordinate system 

A 

Matrices 

A, the covariance matrix of the subscripted quantity; thus A, = <d> 

[$I K ,  the partial derivative matrix 

K', 

K 

the factored K t  matrix; Le., K t  = nKt 

the 2 by 2 K matrix resulting from considering only plane-of-motion 
coordinates 

A 

[ Z ]  Ui the partial derivative matrix 

N a rotation matrix constructed at time ti 

APPENDIX 

Derivation of the Elements of K, 

Presented here is a derivation of relatively simple ana- 
lytical expressions for the elements of the K matrix on an 

AE - sin AE 
n 

g = A t -  

elliptic trajectory. 
If v, is perturbed by an amount Sv,, the first-order 

On an elliptic trajectory the vector r2 can be expressed perturbation of r2, Sr2, holding At  fixed, is given by 
in terms of rl, vI and At  in the form (Ref. 6) 

6rz = Sf rl + 6g v1 + g Sv, 

Using the results of Ref. 6 with some change of variables 
we obtain 

(A-3) 
r. = f (At, rl, v,) rl + g ( ~ t ,  r,, v,) v, 

(A-1) 

where 

a 
rl 

f = - (Cos AE-1) + 1 

(A-2' 

Sf = f, rI Sv, + f Z  v1 Sv, 

(A-4) 

6g = g, r, Svl + gz v1 Svl 

17 
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with 

sin AE (cos A,? - 1) 
rl r 2  n 

f = -  

a 
ar, n' r2 

f. = - 2 (cos A E  - 1) + - sin AE 

(COS A E -  
r2 an2 g1= 

i-y3 1; a (COSAE-1) 
g2 = - 

Since the coordinates in the standard plane of the tra- 
jectory are not coupled to out-of-plane coordinates, it is 
convenient to assign a coordinate system for the position 
and velocity vectors such that one of the coordinate axes 
is perpendicular to the plane of motion. We therefore let 

we immediately obtain 

k,, = F 2 x 1  + G2x,  

k , ,  = 0 

k, ,  = F ,  yl + G1 

k,, = 0 

k31 = 0 

k,? = 0 

where 

Fl = f l  xi + f 2  i 1  

rl = x, e,  + y~ e,  
G, = g1 x1 + 6. 

r2 = x2el  + y2e, 

V, = x, el + yl e, 

sv, = s i ,  e ,  + syl e ,  + si, e3 

where e ,  and e,  are in-plane orthogonal unit vectors, and 
e3 is in the out-of-plane direction. For the K matrix de- 
fined by 

kii k12 k i ,  [ i.1 = K [ = [ k, ,  k,, k Z 3 ]  [ ":] (A-7) 

sz,  si, k,l k32 S i ,  

G, = g1 yl + g2 c1 

(A-9) 

Although the expressions developed in this Appendix 
hold only when the same nonrotating Cartesian coordi- 
nate system is used for both sv, and Srr,  the modification 
of the K matrix for any other desired coordinate systems 
is easily carried out by the multiplication of appropriate 
transformation matrices. 

It is noteworthy that the eccentricity e does not appear 
explicitly in Eq. (A-8). These equations, therefore, are 
accurate for the entire range of e-values for elliptic orbits. 
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